A geometric approach to certain systems of exponential equations

Vahagn Aslanyan

University of East Anglia

11 March 2021

Joint work with Jonathan Kirby and Vincenzo Mantova

Image: A math the second se

Conjecture (Schanuel's conjecture)

If $z_1, \ldots, z_n \in \mathbb{C}$ are \mathbb{Q} -linearly independent, then

$$\operatorname{td}_{\mathbb{Q}}\mathbb{Q}(z_1,\ldots,z_n,e^{z_1},\ldots,e^{z_n})\geq n$$

where td stands for transcendence degree.

Conjecture (Zilber's EAC conjecture)

Let $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ be an irreducible **free** and **rotund** variety. Then there is a point $\boldsymbol{z} \in \mathbb{C}^n$ such that $(\boldsymbol{z}, e^{\boldsymbol{z}}) \in V$.

Conjecture (Zilber's quasiminimality conjecture)

 $\mathbb{C}_{\exp} := (\mathbb{C}; +, \cdot, \exp)$ is quasiminimal, i.e. every definable subset is countable or co-countable.

Conjecture (Schanuel's conjecture)

If $z_1, \ldots, z_n \in \mathbb{C}$ are \mathbb{Q} -linearly independent, then

$$\operatorname{td}_{\mathbb{Q}}\mathbb{Q}(z_1,\ldots,z_n,e^{z_1},\ldots,e^{z_n}) \ge n$$

where td stands for transcendence degree.

- This captures the transcendence properties of exp.
- It is out of reach. For example, it implies the algebraic independence of e and π which is a long-standing open problem. To see this, set n = 2, z₁ = iπ, z₂ = 1.

Image: A math a math

Exponential equations

- Which systems of equations have solutions in $\mathbb{C}_{exp} := (\mathbb{C}; +, \cdot, exp)$?
- Consider the system $z_1 = 2z_2 + 1, e^{z_1} = 3(e^{z_2})^2$.
- exp is a homomorphism from the additive group $(\mathbb{C}; +, 0)$ to the multiplicative group $(\mathbb{C}^{\times}; \cdot, 1)$, i.e. $e^{x+y} = e^x \cdot e^y$. Therefore the above system does not have a solution.
- Let $p(X,Y) \in \mathbb{Q}[X,Y]$ be a non-zero polynomial. Does the system $e^z = 1, p(e,z) = 0$ have a solution?
- This depends on the aforementioned problem on algebraic independence of e and π . If they are independent, then the above system cannot have a solution.

Exponential equations

- Which systems of equations have solutions in $\mathbb{C}_{exp} := (\mathbb{C}; +, \cdot, exp)$?
- Consider the system $z_1 = 2z_2 + 1, e^{z_1} = 3(e^{z_2})^2$.
- exp is a homomorphism from the additive group $(\mathbb{C}; +, 0)$ to the multiplicative group $(\mathbb{C}^{\times}; \cdot, 1)$, i.e. $e^{x+y} = e^x \cdot e^y$. Therefore the above system does not have a solution.
- Let $p(X,Y) \in \mathbb{Q}[X,Y]$ be a non-zero polynomial. Does the system $e^z = 1, p(e,z) = 0$ have a solution?
- This depends on the aforementioned problem on algebraic independence of e and π . If they are independent, then the above system cannot have a solution.
- We can get rid of iterated exponentials. For instance, given the equation $e^{e^z} = z$, we introduce new variables z_1 , z_2 , w_1 , w_2 and consider the system $w_1 = e^{z_1}$, $w_2 = e^{z_2}$, $w_1 = z_2$, $w_2 = z_1$.
- This system has a solution if and only if the original equation does.
- The system has a solution iff the variety $V \subseteq \mathbb{C}^2 \times (\mathbb{C}^{\times})^2$ defined by $w_1 = z_2, w_2 = z_1$ contains an exponential point, i.e. a point $(z_1, z_2, e^{z_1}, e^{z_2})$.
- Thus, the question is: which varieties $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ intersect the graph $\Gamma := \{(\boldsymbol{z}, \exp(\boldsymbol{z})) : \boldsymbol{z} \in \mathbb{C}^n\} \subseteq \mathbb{C}^{2n}$?

Vahagn Aslanyan (UEA)

Conjecture (EAC)

Let $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ be an irreducible **free** and **rotund** variety. Then there is a point $\boldsymbol{z} \in \mathbb{C}^n$ such that $(\boldsymbol{z}, e^{\boldsymbol{z}}) \in V$, where $\boldsymbol{z} := (z_1, \ldots, z_n)$.

Here and later boldface letters denote tuples.

- Let Z and W be the projections of V to \mathbb{C}^n and $(\mathbb{C}^{\times})^n$ respectively.
- Freeness means that Z is free of additive relations and W is free of multiplicative relations.
- Rotundity is an *algebraic property* of V related to Schanuel's conjecture. For example, a rotund variety $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ must have dim $V \ge n$, and similar inequalities hold for certain projections of V.
- The *strong* EAC conjecture is about existence of generic exponential points in free and rotund varieties.

Definition

An uncountable structure is said to be *quasiminimal* if every definable subset (in one variable) is either countable or its complement is countable. Here definable can mean first-order definable, or $\mathfrak{L}_{\omega_1,\omega}$ -definable or, more generally, any subset which is invariant under all automorphisms (over a countable set of parameters).

Conjecture (Zilber's quasiminimality conjecture)

 $\mathbb{C}_{\exp} := (\mathbb{C}; +, \cdot, \exp)$ is quasiminimal.

- The set $2\pi i \mathbb{Z}$ is definable as the kernel of exp.
- $\bullet\,$ In fact, \mathbbm{Z} is definable as the set

$$\{a \in \mathbb{C} : \forall x (\exp(x) = 1 \to \exp(ax) = 1)\}.$$

• An open question: is \mathbb{R} definable in \mathbb{C}_{exp} ?

Zilber's pseudo-exponentiation

- Zilber constructed algebraically closed fields of characteristic 0 equipped with a unary function, called *pseudo-exponentiation*, satisfying some of the basic properties of the complex exp (homomorphism, kernel), the analogues of Schanuel's conjecture and the strong EAC conjecture, and the *Countable Closure Property*.
- These can be axiomatised in $\mathfrak{L}_{\omega_1,\omega}(Q)$, where Q is a quantifier for "there are uncountably many".
- Zilber showed that theory is categorical in uncountable cardinals. In particular, there is a unique model \mathbb{B}_{exp} of cardinality 2^{\aleph_0} .

Conjecture (Zilber)

 $\mathbb{B}_{\exp} \cong \mathbb{C}_{\exp}.$

- This conjecture is equivalent to **Schanuel** + **strong EAC**.
- Kirby proved that if $\mathbb{B}_{exp} \equiv \mathbb{C}_{exp}$ then $\mathbb{B}_{exp} \cong \mathbb{C}_{exp}$.
- $\mathbb{B}_{\mathrm{exp}}$ is quasiminimal, so the above conjecture implies the quasiminimality conjecture.
- Bays and Kirby proved that EAC implies quasiminimality.

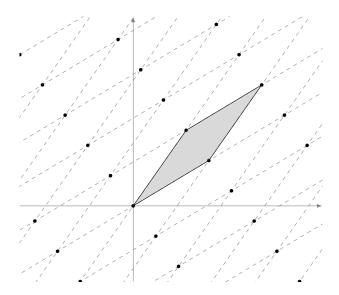
- Exponential equations in one variable can be solved. E.g. $e^z = z$ has infinitely many solutions.
- Let $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$, and let Z and W be the projections of V on \mathbb{C}^n and $(\mathbb{C}^{\times})^n$ respectively.
- If dim Z = n (one says V has a dominant projection to \mathbb{C}^n), then $V \cap \Gamma \neq \emptyset$. (Brownawell-Masser, D'Aquino-Fornasiero-Terzo)
- EAC for dim Z = 1. (Mantova-Masser)
- EAC for raising to generic real powers, i.e. Z is a generic real linear space and $V = Z \times W$. (Zilber)

Elliptic curves and abelian varieties

- Let $\Lambda \subseteq \mathbb{C}$ be a lattice of rank 2, e.g. $\mathbb{Z} + i \mathbb{Z}$.
- The quotient \mathbb{C}/Λ is a torus.
- It can be embedded into the projective plane $\mathbb{P}_2(\mathbb{C})$. The embedding is given by $\exp_E : z \mapsto [1 : \wp(z) : \wp'(z)/2]$ where \wp is the Weierstrass \wp -function associated to the lattice Λ .
- An elliptic curve $E \subseteq \mathbb{P}_2$ satisfies a cubic equation (in affine coordinates $y^2 = 4x^3 g_2x g_3$).
- Thus, elliptic curves are connected projective algebraic groups of dimension 1.
- Abelian varieties are higher dimensional analogues of elliptic curves: connected projective algebraic groups.
- When a quotient \mathbb{C}^g / Λ (with Λ a lattice of rank 2g) can be embedded in a projective space, we get an abelian variety.
- The group structure of an abelian variety is commutative.
- Think of products of elliptic curves.

・ロト ・日ト ・ヨト ・ヨト

A lattice



æ

• • • • • • • •

EAC for abelian varieties: dominant projection

Let A be an abelian variety of dimension n and let $\exp_A : \mathbb{C}^n \to A$ be its exponential map. Its kernel is a lattice $\Lambda \subseteq \mathbb{C}^n$ of rank 2n. There is a Schanuel conjecture and an EAC conjecture in this setting too.

Theorem (A.-Kirby-Mantova)

Let $V \subseteq \mathbb{C}^n \times A$ be an algebraic subvariety with dominant projection to \mathbb{C}^n , that is, its projection to \mathbb{C}^n has dimension n. Then there is $\mathbf{z} \in \mathbb{C}^n$ such that $(\mathbf{z}, \exp_A(\mathbf{z})) \in V$. Moreover, we can locally parametrise all sufficiently large exponential points in V be points of Λ .

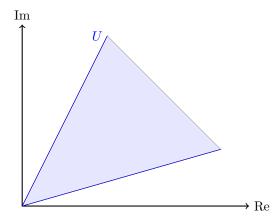
- For example, $\wp'(\wp(z)^2) = z$ has infinitely many solutions.
- Brownawell-Masser (and D'Aquino-Fornasiero-Terzo) used Newton's iterative method to approximate solutions, and in particular Kantorovich's theorem which gives criteria for these approximations to converge to an actual solution.
- Our approach is more geometric. It also works for the usual complex exponentiation. In both cases we also locally describe all sufficiently large exponential points.

Vahagn Aslanyan (UEA)

Proof

- Clearly, dim $V \ge n$. We may replace V with a subvariety and assume dim V = n.
- Let $\alpha: U \to A$ be an algebraic map whose graph is contained in V.
- Here $U \subseteq \mathbb{C}^n$ is a neighbourhood of infinity with a branch cut removed. For simplicity, we work with a smaller set U, which is a convex simply connected cone at infinity, i.e. whenever $z \in U$ and $t \ge 1$, we have $tz \in U$.
- α is holomorphic on U.
- Since $(\boldsymbol{z}, \alpha(\boldsymbol{z})) \in V$ it suffices to solve the equation

$$\exp_A(\boldsymbol{z}) = \alpha(\boldsymbol{z}).$$



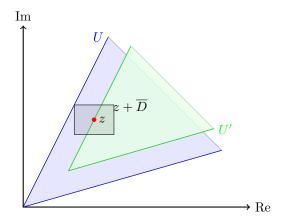
・ロト ・四ト ・ヨト ・ヨト

- Since U is simply connected, we can choose a holomorphic branch of logarithm of α , which we denote by $G: U \to \mathbb{C}^n$.
- We can pick a fundamental domain D of Λ , and a branch of logarithm $\text{Log}_A : A \to D$, and assume $G = \text{Log} \circ \alpha$.
- In particular, since D is bounded, so is G.
- Define a map $F: U \to \mathbb{C}^n$ by

$$F: \boldsymbol{z} \mapsto \boldsymbol{z} - G(\boldsymbol{z}) = \boldsymbol{z} - \operatorname{Log} \alpha(\boldsymbol{z}).$$

- Clearly, $z \in U$ solves $\exp_A(z) = \alpha(z)$ if and only if $F(z) \in \Lambda$.
- Thus, to prove existence of solutions we need to show that the image F(U) contains lattice points.

- Since G is bounded, by Cauchy estimates, all of its first partial derivatives are bounded. In fact, shrinking U we may assume the first partial derivatives are arbitrarily small, i.e. $\|dG(z)\| < \varepsilon$ on U for a small ε .
- So dF(z) is close to the identity matrix, hence it is non-singular.
- By the inverse function theorem, F is a local homeomorphism, hence an open map.
- So the image E := F(U) is open and connected.
- Moreover, F(z) z = -G(z) is bounded, so F behaves like a translation near points at infinity. So E and U cannot differ by a large set.
- Let $U' := \{ \boldsymbol{z} \in U : \overline{\boldsymbol{z} + D} \subseteq U \}$. Then $U' \subseteq E$.
- U' is a cone, hence it contains infinitely many lattice points. Thus, $E \cap \Lambda$ is infinite, and we get infinitely many solutions to $\exp_A(\mathbf{z}) = \alpha(\mathbf{z})$.



æ

16 / 21

・ロト ・回ト ・ヨト ・ヨト

Finding all solutions in U

Lemma

F is injective on U.

Proof.

Assume for some $z^1, z^2 \in U$ we have $F(z^1) = F(z^2)$. Recall that G(z) = z - F(z). So we have $z^1 - z^2 = G(z^1) - G(z^2)$. Since the line segment $[z^1, z^2]$ is entirely contained in U, by the mean value theorem

$$|\boldsymbol{z}^1 - \boldsymbol{z}^2| = |G(\boldsymbol{z}^1) - G(\boldsymbol{z}^2)| = O\left(\max_{\boldsymbol{z} \in [\boldsymbol{z}^1, \boldsymbol{z}^2]} \|dG(\boldsymbol{z})\|\right) \cdot |\boldsymbol{z}^1 - \boldsymbol{z}^2|$$

Since $\|dG(z)\|$ is small, we must have $z^1 = z^2$.

Corollary

The map F has a holomorphic inverse $S: E \to U$. All solutions of $\exp_A(\mathbf{z}) = \alpha(\mathbf{z})$ with $\mathbf{z} \in U$ are given by $\mathbf{z} = S(\lambda)$ with $\lambda \in E \cap \Lambda$. Asymptotically we have $S(\mathbf{x}) = \mathbf{x} + \log \alpha(\mathbf{x}) + o(1)$ as $|\mathbf{x}| \to \infty$ with $\mathbf{x} \in E$.

Vahagn Aslanyan (UEA)

Finding all large exponential points in V

- In general, we have to work with large domains U neighbourhoods of points at infinity with a branch cut removed.
- If the projection $\pi: V \to \mathbb{C}^n$ has degree d, then V is covered by the graphs of d branches of α .
- We can find all large solutions for each branch. Altogether, there will be roughly d solutions in each fundamental domain near points at infinity.

・ロト ・ 同ト ・ ヨト ・ ヨ

Finding all large exponential points in V

- In general, we have to work with large domains U neighbourhoods of points at infinity with a branch cut removed.
- If the projection $\pi: V \to \mathbb{C}^n$ has degree d, then V is covered by the graphs of d branches of α .
- We can find all large solutions for each branch. Altogether, there will be roughly d solutions in each fundamental domain near points at infinity.

Theorem (A.-Kirby-Mantova)

Let $V \subseteq \mathbb{C}^n \times A$ be an irreducible variety of dimension n with dominant projection $\pi: V \to \mathbb{C}^n$. Let $d := \deg \pi$. We embed \mathbb{C}^n in the projective space \mathbb{P}_n in the usual way.

Then for almost all points at infinity $\mathbf{c} \in \mathbb{P}_n \setminus \mathbb{C}^n$, there is an open set $U^* \subseteq \mathbb{P}^n$ containing \mathbf{c} such that the points $(\mathbf{z}, \exp_A(\mathbf{z})) \in V$ with $\mathbf{z} \in U := U^* \cap \mathbb{C}^n$ are parametrised by d copies of $\Lambda \cap U$.

Now consider the exponential map $\exp : \mathbb{C}^n \to (\mathbb{C}^{\times})^n$. Its kernel is the lattice $\Lambda = (2\pi i \mathbb{Z})^n$, which has rank n.

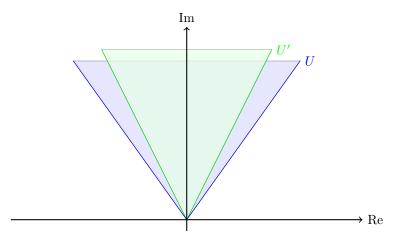
Theorem

Let $V \subseteq \mathbb{C}^n \times (\mathbb{C}^{\times})^n$ be a variety of dimension n with dominant projection $\pi: V \to \mathbb{C}^n$. Let $d := \deg \pi$. We embed \mathbb{C}^n in projective space \mathbb{P}_n in the usual way. Then for almost all points at infinity $\mathbf{c} \in \mathbb{P}_n \setminus \mathbb{C}^n$, there is an open set $U^* \subseteq \mathbb{P}^n$ containing \mathbf{c} such that the points $(\mathbf{z}, \exp(\mathbf{z})) \in V$ with $\mathbf{z} \in U := U^* \cap \mathbb{C}^n$ are parametrised by d copies of $\Lambda \cap U$.

Image: A math the second se

Proof

- Extract an algebraic map $\alpha : U \to (\mathbb{C}^{\times})^n$, where $U \subseteq \mathbb{C}^n$ is chosen such that the the coordinates are roughly proportional to each other. Moreover, we can choose U so that $U \cap \Lambda \neq \emptyset$.
- Then we can understand the growth of α . In particular, $G(\boldsymbol{z}) = \text{Log}(\alpha(\boldsymbol{z}))$ has logarithmic growth.
- As before, define $F: U \to \mathbb{C}^n : \boldsymbol{z} \mapsto \boldsymbol{z} G(\boldsymbol{z})$.
- Using Cauchy estimates, we can bound the first partial derivatives of G. As in the abelian case, $\|dG(z)\|$ can be taken to be arbitrarily small on U.
- Hence, F is injective and open, and E := F(U) contains a narrower cone $U' \subseteq U$.
- U' also contains infinitely many lattice points, so $\exp(z) = \alpha(z)$ has infinitely many solutions.
- The inverse of F parametrises this solutions by lattice points.



臣

・ロト ・回ト ・ヨト ・ヨト